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This document is intended to introduce you to solving 2-dimensional elastic collision problems 
for  circles  without  complicated  trigonometry.  It  is  much  easier  to  use  vectors  to  solve  2-
dimensional collision problems than to use trigonometry.

If  you  are  unfamiliar  with  vectors,  a  web  search  for  "vectors"  should  yield  a  variety  of 
introductions.  Be aware that  vectors are commonly represented in  two ways.  One way is  to 
specify a magnitude and an angle. The other is to specify the components (typically in the x and y 
directions). The two forms represent the same information and can be interconverted, but for 
some tasks one form may be more convenient  than the other.  Trigonometry is  important  for 
understanding the concept of vectors. However, the goal of this document is to avoid tedious 
(and  computationally  expensive)  trigonometry.  Therefore  we  will  only  use  the  component 
representation  of  a  vector,  not  the  magnitude  and  angle  form.  This  reduces  the  actual 
computations to addition, subtraction, multiplication, division, and square roots.

Notation: Throughout this document, m is mass and v is velocity. Subscripts 1 and 2 distinguish 
between the two colliding objects. An apostrophe after a variable means that the value is taken 
after the collision (called prime; i.e., v' is “v prime”).

Physics of elastic collisions in one dimension

An elastic collision is a collision in which kinetic energy is conserved. That means no energy is 
lost  as  heat  or  sound  during  the  collision.  In  the  real  world,  there  are  no  perfectly  elastic 
collisions  on an everyday scale of size.  But you can get the sense of an elastic  collision by 
imagining a perfect  pool  ball  which doesn't  waste any energy when it  collides.  In an elastic 
collision,  both  kinetic  energy and  momentum  are  conserved  (the  total  before  and  after  the 
collision remains the same).

Momentum is the product of mass and velocity: p=mv
The kinetic  energy of  an  object  is  one-half  times  its  mass  times  the  square  of  its  velocity: 
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Now it is easy to write the conservation of momentum and kinetic energy as two equations:
Conservation of momentum: m1 v1m2 v2=m1v1
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Conservation of kinetic energy: 
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Combining  these  two  equations  and  doing  a  lot  of  algebra  gives  the  final  (after  collision) 
velocities of objects 1 and 2:
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This  result  allows us to  find the velocity of two objects  after  undergoing a one-dimensional 
elastic collision. We will use this result later in the 2-dimensional case.



Elastic collisions in two dimensions

We will follow a 7-step process to find the new velocities of two objects after a collision. The 
basic goal of the process is to project the velocity vectors of the two objects onto the vectors 
which are normal (perpendicular) and tangent to the surface of the collision.  This gives us a 
normal component and a tangential component for each velocity. The tangential components of 
the velocities are not changed by the collision because there is no force along the line tangent to 
the  collision  surface.  The  normal  components  of  the  velocities  undergo  a  one-dimensional 
collision, which can be computed using the one-dimensional collision formulas presented above. 
Next  the unit  normal  vector  is  multiplied  by the scalar  (plain number,  not  a  vector)  normal 
velocity after the collision to get a vector which has a direction normal to the collision surface 
and a magnitude which is the normal component of the velocity after the collision. The same is 
done with the unit tangent vector and the tangential velocity component. Finally the new velocity 
vectors are found by adding the normal velocity and tangential velocity vectors for each object.

1. Find unit normal and unit tangent vectors. The unit normal vector is a vector which has a 
magnitude of 1 and a direction that is normal (perpendicular) to the surfaces of the objects at 
the point of collision.  The unit  tangent vector is a vector with a magnitude of 1 which is 
tangent to the circles' surfaces at the point of collision.

First  find  a  normal  vector.  This  is  done  by  taking  a 
vector whose components are the difference between the 
coordinates of the centers of the circles. Let x1, x2, y1, and 
y2 be the x and y coordinates of the centers of the circles. 
(It does not matter which circle is labeled 1 or 2; the end 
result  will  be the same.)  Then the normal  vector  n is: 
n=〈 x2−x1 , y2− y1〉

Next, find the unit vector of  n,  which we will call  un. 
This is done by dividing by the magnitude of n:
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Next we need the unit tangent vector. This is easy to find from the unit normal vector. Just 
make the x component of the unit tangent vector equal to the negative of the y component of 
the unit normal vector, and make the  y component of the unit tangent vector equal to the  x 
component of the unit normal vector: ut=〈−un y , unx〉

2. Create the initial (before the collision) velocity vectors, v1 and v2. These are just the x and y 
components of the velocities put into vectors:  v1=〈v1x , v1y〉 (and similarly for  v2). Note 
that this step really isn't necessary if the velocities are already represented as vectors. This step 
is needed only if the velocities are initially represented as separate x and y values.

3. Keep in mind that after the collision the tangential component of the velocities is unchanged 
and the normal component of the velocities can be found using the one-dimensional collision 
formulas presented earlier. So we need to resolve the velocity vectors, v1 and v2, into normal 
and tangential components. To do this, project the velocity vectors onto the unit normal and 
unit tangent vectors by computing the dot product. Let v1n be the scalar (plain number, not a 
vector) velocity of object 1 in the normal direction. Let v1t be the scalar velocity of object 1 in 
the tangential direction. Similarly, let  v2n and  v2t be for object 2. These values are found by 

unit normalunit tangent



projecting the velocity vectors onto the unit normal and unit tangent vectors, which is done by 
taking the dot product:

v1n=un⋅v1   v1t=ut⋅v1   v2n=un⋅v2   v2t=ut⋅v2

4. Find the new tangential velocities (after the collision). This is the simplest step of all. The 
tangential components of the velocity do not change after the collision because there is no 
force between the circles in the tangential direction during the collision. So, the new tangential 
velocities are simply equal to the old ones: 

v1t
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,=v2t  
Remember that the apostrophe after the variable name means “after the collision.”

5. Find the new normal velocities. This is where we use the one-dimensional collision formulas. 
The velocities of the two circles along the normal direction are perpendicular to the surfaces 
of the circles at the point of collision, so this really is a one-dimensional collision.
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6. Convert the scalar normal and tangential velocities into vectors. This is easy—just multiply 
the unit normal vector by the scalar normal velocity and you get a vector which has a direction 
that is normal to the surfaces at the point of collision and which has a magnitude equal to the 
normal component of the velocity. It is similar for the tangential component.
v1n
, =v1n

, ⋅un   v1t
,=v1t

,⋅ut   v2n
, =v2n

, ⋅un   v2t
,=v2t

,⋅ut
7. Find  the  final  velocity vectors  by adding  the  normal  and tangential  components  for  each 
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Now we have the final (after collision) velocity of each object as a vector.

To see these formulas in action, check out:
Bouncescope  (http://www.vobarian.com/bouncescope/).  This  free  program  allows  you  to 
simulate lots of balls bouncing around elastically. The mass, size, initial velocity, and color of 
each ball can be customized, or you can add batches of randomly generated balls. The source 
code is provided.

To check for updated versions of this document, visit:
http://www.vobarian.com/collisions/

Vobarian Software homepage:
http://www.vobarian.com/

Feedback and comments are welcome via the e-mail address listed on the Vobarian Software 
website.
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